High-pressure liquid chromatography
High-pressure liquid chromatography, HPLC, is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture.
In column chromatography a solvent drips through a column filled with an adsorbent under gravity. HPLC is a highly improved form of column chromatography. A pump forces a solvent through a column under high pressures of up to 400 atmospheres. The column packing material or adsorbent or stationary phase is typically a granular material made of solid particles such as silica or polymers.
The pressure makes the technique much faster compared to column chromatography. This allows using much smaller particles for the column packing material. The smaller particles have a much greater surface area for interactions between the stationary phase and the molecules flowing past it. This results in a much better separation of the components of the mixture.
The components of a mixture are separated from each other due to their different degrees of interaction with the absorbent particles. This causes different elution rates for the different components and leads to the separation of the components as they flow out the column. Compared to column chromatography, HPLC is highly automated and extremely sensitive.
How Does High Performance Liquid Chromatography Work?
The components of a basic high-performance liquid chromatography [HPLC] system are shown in the simple diagram in Figure E.
A reservoir holds the solvent [called the mobile phase, because it moves]. A high-pressure pump [solvent delivery system or solvent manager] is used to generate and meter a specified flow rate of mobile phase, typically milliliters per minute. An injector [sample manager or autosampler] is able to introduce [inject] the sample into the continuously flowing mobile phase stream that carries the sample into the HPLC column. The column contains the chromatographic packing material needed to effect the separation. This packing material is called the stationary phase because it is held in place by the column hardware. A detector is needed to see the separated compound bands as they elute from the HPLC column [most compounds have no color, so we cannot see them with our eyes]. The mobile phase exits the detector and can be sent to waste, or collected, as desired. When the mobile phase contains a separated compound band, HPLC provides the ability to collect this fraction of the eluate containing that purified compound for further study. This is called preparative chromatography [discussed in the section on HPLC Scale].
Note that high-pressure tubing and fittings are used to interconnect the pump, injector, column, and detector components to form the conduit for the mobile phase, sample, and separated compound bands.
The detector is wired to the computer data station, the HPLC system component that records the electrical signal needed to generate the chromatogram on its display and to identify and quantitate the concentration of the sample constituents (see Figure F). Since sample compound characteristics can be very different, several types of detectors have been developed. For example, if a compound can absorb ultraviolet light, a UV-absorbance detector is used. If the compound fluoresces, a fluorescence detector is used. If the compound does not have either of these characteristics, a more universal type of detector is used, such as an evaporative-light-scattering detector [ELSD]. The most powerful approach is the use multiple detectors in series. For example, a UV and/or ELSD detector may be used in combination with a mass spectrometer [MS] to analyze the results of the chromatographic separation. This provides, from a single injection, more comprehensive information about an analyte. The practice of coupling a mass spectrometer to an HPLC system is called LC/MS.